Widening ROBDDs with Prime Implicants

Neil Kettle[†], Andy King[†] and Tadeusz Strzemecki[‡]

† University of Kent, Canterbury, UK

‡ Fordham University, New York, USA

TACAS ETAPS-2006

Reduced-Ordered Binary Decision Diagrams

- ROBDDs have numerous applications in model checking, program analysis and abstract interpretation
- ROBDDs are remarkably tractable but problematic Boolean functions arise whose representation is excessive for any variable ordering
- Minimisation by variable reordering then is a limited solution, and this motivates the need for approximation

- Preliminaries

A Horrible Boolean Function with a Reasonably Dense Representation

BDDs of $f = \neg c \land ((\neg a \land ((d \land \neg e) \lor (\neg b \land \neg d))) \lor (b \land (d \leftrightarrow \neg e)))$ and $g = \neg f$

- A dense over-approximation of f can be obtained in terms of implicants of g
- A cube p is an implicant of g if $p \models g$, thus $(a \land \neg b)$ is an implicant of g

- A dense over-approximation of f can be obtained in terms of implicants of g
- A cube p is an implicant of g if $p \models g$, thus $(a \land \neg b)$ is an implicant of g
- Furthermore, $a \not\models g$ and $\neg b \not\models g$, thus $(a \land \neg b)$ is a prime implicant of g

- The cube $p = (b \land \neg d \land \neg e)$ is an implicant of $(g \land a \land c)$, $(g \land a \land \neg c)$, $(g \land \neg a \land c)$ and $(g \land \neg a \land \neg c)$
- The cube *p* is thus an implicant of *g*
- The implicant *p* is prime because
 - $(\neg d \land \neg e) \not\models g$ and
 - ullet $(b \wedge \neg e)
 ot \models g$ and
 - $(b \land \neg d) \not\models g$

- The cube $p = (b \land \neg d \land \neg e)$ is an implicant of $(g \land a \land c)$, $(g \land a \land \neg c)$, $(g \land \neg a \land c)$ and $(g \land \neg a \land \neg c)$
- ullet The cube p is thus an implicant of g
- The implicant *p* is prime because
 - $(\neg d \land \neg e) \not\models g$ and
 - $(b \land \neg e) \not\models g$ and
 - $(b \land \neg d) \not\models g$
- The cube c is an implicant of $(g \land a \land b)$, $(g \land a \land \neg b)$, $(g \land \neg a \land b)$ and $(g \land \neg a \land \neg b)$
- The cube c is thus an implicant of g
- The implicant c is prime since $true \not\models g$

- The set of all prime implicants is $primes(g) = \{c, (d \land e), (a \land \neg b), (b \land \neg d \land \neg e)\}$
- Since
 - $c \models g$, it follows that $f = \neg g \models \neg c$
 - $(d \land e) \models g$, it follows that $f = \neg g \models \neg (d \land e)$
 - $(a \land \neg b) \models g$, it follows that $f = \neg g \models \neg (a \land \neg b)$
 - $(b \land \neg d \land \neg e) \models g$, it follows that $f = \neg g \models \neg (b \land \neg d \land \neg e)$
- This leads to a family of approximations (widenings)

$$\nabla_k(f) = \bigwedge \{ \neg p \mid p \in primes(\neg f) \land \|p\| \le k \}$$

where ||p|| denotes the number of propositional variables in p

Successive Approximations of f

- $\nabla_1(f) = f_1$ has 16 truth assignments and 1 node
- $\nabla_2(f) = f_2$ has 9 truth assignments and 5 nodes
- $\nabla_3(f) = f$ has 7 truth assignments and 8 nodes

- $\nabla_1(f) = f_1$ has 16 truth assignments and 1 node
- $\nabla_2(f) = f_2$ has 9 truth assignments and 5 nodes
- $\nabla_3(f) = f$ has 7 truth assignments and 8 nodes
- Observe $f \models \nabla_3(f) \models \nabla_2(f) \models \nabla_1(f)$

- $\nabla_1(f) = f_1$ has 16 truth assignments and 1 node
- $\nabla_2(f) = f_2$ has 9 truth assignments and 5 nodes
- $\nabla_3(f) = f$ has 7 truth assignments and 8 nodes
- Observe $f \models \nabla_3(f) \models \nabla_2(f) \models \nabla_1(f)$
- Generally
 - Tuneable: ∇_k is never less precise than ∇_{k-1}
 - Predictable: if $f_1 \models f_2$ then $\nabla_k(f_1) \models \nabla_k(f_2)$
 - Swings both ways: $f \models \nabla_k(f)$ and $\neg \nabla_k(\neg f) \models f$
 - Ordering independent: ∇_k approximates f rather than its representation

Implementation

Implementation

- The complexity of finding the shortest prime implicant is in $GC(\log^2 n, coNP)$ -complete
- Coudert and Madre ¹ proposed an algorithm for enumerating all primes whose complexity is related to the size of an ROBDD encoding of the primes and not the number of primes
- We overlay the algorithm with a constraint which ensures that the number of propositional variables in any prime does not exceed a given k
- This also reduces the size of all intermediate ROBDDs

¹O. Coudert and J. C. Madre, "A New Graph Based Prime Computation Technique", in Logic Synthesis and Optimization, Kluwer, pages 33–57, 1993 ≥

Experimental Results

ID		Approximation		Ratios		Time	Notes
		size	minterms	size	minterms		
Ravi	pair #177	8382	3.40×10^{14}	0.32	1.83	4.61	q: 0.94
	pair #182	9711	1.47×10^{15}	0.29	1.81	6.32	q: 0.84
	mm9b #420	933	1.88×10^{9}	0.01	1.16	10.85	q : 0.75
	mm92 #421	722	1.88×10^{9}	0.01	1.16	11.96	q: 0.84
	s9234 #288	15	5.68×10^{22}	0.01	1.58	1086.12	q: 0.88
	s9234 #488	11	2.89×10^{22}	0.01	1.49	2321.68	q: 0.92
Shiple pair #177		8385	1.72×10^{15}	0.32	10.85	4.86	q: 0.92
	pair #182	9714	8.06×10^{15}	0.29	9.93	6.35	q: 0.81
	mm9b #420	933	1.88×10^{9}	0.01	1.16	12.39	q: 0.75
	mm92 #421	722	1.88×10^{9}	0.01	1.16	13.10	q: 0.84
	s9234 #288	15	5.68×10^{22}	0.01	1.58	1057.62	q: 0.87
	s9234 #488	11	2.89×10^{22}	0.01	1.49	2562.30	q: 0.92
Our	pair #177	11027	2.06×10^{14}	0.42	1.11	0.58	k : 5
	pair #182	7301	8.32×10^{14}	0.22	1.03	0.85	k : 6
	mm9b #420	44334	1.68×10^{9}	0.47	1.02	6.38	k : 12
	mm92 #421	39718	1.69×10^{9}	0.41	1.05	8.19	k : 11
	s9234 #288	75	3.64×10^{22}	0.01	1.01	20.36	k : 7
	s9234 #488	103	1.96×10^{22}	0.01	1.01	47.53	k : 6

Experimental Results

Experimental Results

Conclusions

- The approximation appears to be competitive with current existing methods
- By increasing k until a timeout is exceeded, we obtain a so-called anytime approach to ROBDD approximation
- Details are provided in the paper as to how prime implicants can be used to widen for time as well as space